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a b s t r a c t

Solar energy captured by solar photovoltaic (PV) systems has great potential to meet the high demand for
renewable energy sources in urban areas. A photovoltaic noise barrier (PVNB) system, which integrates a
PV system with a noise barrier, is a promising source for harvesting solar energy to overcome the
problem of having limited land available for solar panel installations. When estimating the solar PV
potential at the city scale, it is difficult to identify sites for installing solar panels. A computational
framework is proposed for estimating the solar PV potential of PVNB systems based on both existing and
planned noise barrier sites. The proposed computational framework can identify suitable sites for
installing photovoltaic panels. A deep learning-based method is used to detect existing noise barrier sites
from massive street-view images. The planned noise barrier sites are identified with urban policies.
Based on the existing and planned sites of noise barriers in Nanjing, the annual solar PV potentials in
2019 are 29,137 MW h and 113,052 MW h, respectively. The estimation results show that the potential
PVNB systems based on the existing and planned noise barrier in 2019 have the potential installed ca-
pacity of 14.26 MWand 57.24 MW, with corresponding potential annual power generation of 4662 MW h
and 18,088 MW h, respectively.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

An accurate assessment of the potential for installing solar
photovoltaic (PV) panels in urban areas is essential for imple-
menting sustainable technologies and policy solutions at the city
scale [1e3]. At present, approximately 55% of the world’s popula-
tion lives in cities, and cities constitute approximately two-thirds of
the global primary energy demand [4]. Global energy assessments
indicate that compared with fossil fuels, solar energy is a renewable
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energy source that causes less harm to the environment [5]. During
the past decade, there has been a 50% increase in global solar PV
demand. While centralized solar power plants require large areas
for PV system installation, urban areas possess only limited space
for solar PV module installation due to the high price of land [6].
Significant efforts have been made to estimate the solar PV po-
tential of rooftop PV systems inwhich a large number of small-scale
solar PV modules are installed on rooftops [7,8]. The density of
high-rise cities, however, means that insufficient rooftop space
exists to meet the high solar energy demand. In addition, building-
integrated PV systems still have many unsolved health, and safety
issues remain [6].

Currently, PV system integration with urban noise barriers has
attracted considerable attention in many countries [9]. A noise
barrier is a common form of construction located near roadways in
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urban environments to protect inhabitants from noise pollution.
The photovoltaic noise barrier (PVNB) system was developed by
combining a PV system with a noise barrier. This combination can
serve as an alternative solution to address the problem of limited
solar resources in densely populated urban areas with high energy
needs [10]. While research on establishing the PVNB system from
the perspectives of solar panel selection and PV module configu-
ration exists, few studies have evaluated the solar PV potential of
urban noise barriers at the city scale. One problem is that at the city
scale, it is difficult to identify the road edges where urban noise
barriers currently exist. In addition, it is challenging to obtain
planned sites for urban noise barrier installation according to urban
plan policies.

Geographic Information Systems (GIS) is widely adopted for
comprehensive geographic analysis and achieving human-oriented
geographic information presentation [11,12]. Rather thanmodelling
the urban system from an aerial view, emerging methods have
adopted street-view images, which enable modelling the physical
environments of cities at the street level [13]. Massive numbers of
street-view images from online map providers such as Google
Maps, Baidu Maps, and Tencent Maps have become new data
sources that provide unprecedented survey opportunities [14].
Deep learning and computer vision technologies have been applied
to design automatic tools for extracting target objects from street-
view images [15]. For example, a single shot multi-box detector
(SSD), which is a deep convolutional neural networkmodel used for
object detection, can accurately extract tiny objects from street-
view images [16]. Thus, a big data approach can be used to iden-
tify the locations of noise barriers and use them as a primary in-
dicator for estimating the solar PV potential of urban noise barriers.

The primary objective of this study is to develop a framework for
estimating the solar PV potential of noise barriers at the city scale.
The city of Nanjing, China is adopted as an example to estimate the
solar PV potential of noise barriers in Nanjing. The spatial distri-
bution map of the estimated solar PV potential of noise barriers
provides the basis for the implementation of the urban plan policy
for future utilization of renewable solar PV energy.

2. Literature review

2.1. Solar energy harvesting with a photovoltaic noise barrier

PVNB is not a new technology [8]. Many studies have considered
combining the advantages of solar energy resources with the
reduction of road traffic noise pollution using PVNB [9,17]. Noise
barriers of different types have different physical properties in
terms of surface structure, area, orientation, and slope that can
restrict the efficiency with which solar PV modules can harvest
solar energy [18]. Several studies have concentrated on analysing
the effects of noise barrier structural characteristics on the utili-
zation of solar energy resources at the micro-scale [5,14]. PV noise
barriers with bifacial PV modules, which receive solar energy on
both sides, are considered the best design for capitalizing on noise
barrier use [19]. However, the reflection from bifacial PV modules
installed on the PVNB can cause driver distraction on roadways,
which prevents it from replacing themono-facial PVmodules in the
near future [20].

The existing research on PVNBs has primarily focused on the
engineering aspects of solar energy harvesting with PVNBs at the
macroscale [21]. An assessment of actual photoelectric conversion
efficiency and the economic benefits of PVNB indicated that PVNB
has substantial development potential and application prospects
[9]. A cost-benefit analysis method was proposed to evaluate the
economic benefits of PV noise barriers [6]. Although PVNB in-
stallations increase the cost of noise barriers, the integration of
182
solar PVs with noise barriers introduces long-term ecological
benefits [6]. This view was also supported by a case study of PVNB
installed along a subway; the study conducted economic and
environmental benefit analyses to determine whether the PVNB
can generate profits [10]. The PV potential of noise barriers on the
United States highway system was estimated based on the ratio of
highway mileage to the length of PVNBs; the resulting is further
compared with the energy demand of the United States to estimate
the economic benefit of PVNBs [10].

Although PVNB technology has considerable deployment po-
tential for solar energy harvesting because more than 60 million
km of roadway exists in the world [11], it has not yet been widely
deployed worldwide.

2.2. Use GIS and remote sensing technology to estimate solar PV
potential

The solar PV potential of a city depends on environmental
characteristics such as its geographic location and climatic condi-
tions. A geographic information system (GIS) is an ideal tool for
analysing the potential for urban solar PV at large spatial scales
[22e24]. Many studies have been conducted by combining remote
sensing data and GIS technology to estimate urban solar PV po-
tential [25,26]; however, estimating the potential of urban solar PV
mainly solves the problem of identifying surfaces suitable for solar
utilization and determining the potential of solar PV on solar uti-
lization surfaces [27]. The GIS analysis function, combined with
object-specific image recognition, is used to evaluate the solar PV
potential of the solar utilization surface [25]. There are also case
studies that assess solar radiation based on a 3D height model of
the city using the Solar Analyst plugin in ArcGIS, which considers
the available surface slope according to the 3D model and accu-
rately describes the different urban constituent elements and their
shadows [28], The cost of acquiring high-resolution satellite images
and LiDAR 3D laser point clouds is relatively high, making it
impossible to estimate the urban solar PV potential with these
high-price remote sensing data [29]. Some studies have proposed
the use of free satellite images combined with open source GIS
software to estimate the urban PV potential [30,31]. For example,
publicly available geographic building data and aerial images can be
analysed using image recognition andmachine learning techniques
to estimate urban PV potential [32]. Google satellite imagery and
Google Street View imagery were integrated to build a 3Dmodel for
estimating the urban PV potential of building roofs [33].

2.3. Emerging solar PV potential estimation approach with street-
view imagery

Several studies have estimated the urban solar PV potential
based on field survey statistics and remote sensing data products
[34,35]. For example, B�odis et al. evaluated the solar PV potential in
the entire EUwith an overlay analysis using the statistical data from
the European Habitat Maps and European City Atlases [6]. LiDAR
data and area-based modelling methods have also been used to
estimate the solar potential of multiform building roofs [36].
However, it is difficult to balance the remote sensing quality and
the acquisition cost when estimating urban solar PV potential at
large spatial scales. The emergence of public map services, e.g.,
Google Satellite, Google Street View, and Baidu Street View has
made street-level urban images available [37] that can accurately
reflect information regarding a city’s facade. Such data provide new
opportunities for solar energy potential estimation at the city level
[14]. Open access street-view images have advantages in terms of
broad coverage and low acquisition costs compared with high-
accuracy remote sensing images.
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City facades have a reduced chance of being obscured by dust or
snow, which provides better maintenance conditions for PV mod-
ules [38]. As an important part of the urban space facade, PVNB can
be applied to both reduce noise and generate power without
occupying additional land [10]. Urban morphology is an important
factor that affects the distribution of urban solar radiation [39].
Regarding urban canyon geometry, the sky view factor (SVF) is
closely related to the spatial variability of solar radiation [13]. Street
panoramas and building height models can be combined to analyse
seasonal variations in solar radiation in street canyons at the city
scale [40]. Carrasco-Hernandez et al. reconstructed the street ge-
ometry and calculated the total shortwave radiation for the urban
canyon of Manchester in England [41].

The current image classification method used for object detec-
tion from street-view images is mainly be divided into two cate-
gories: one-stage and two-stage methods [42]. The one-stage
method directly predicts the locations and categories of objects in
the image based on a map calculated as the image passes through
the network [43]. They have advantages in terms of fast training
and recognition speed but also achieve limited classification accu-
racy [44]. The two-stage methods classify objects based on a prior
detection of candidate positions for objects [43]. While these
methods typically achieve better detection performance, their
training and recognition speeds are not as fast as those of the one-
stagemethods [44]. The you only look once version three (YOLO v3)
model is the state-of-art one-stage object detector. It achieves both
relatively high accuracy and has a fast detection speed. YOLO v3 has
achieved excellent detection results on standardized data sets such
as the PASCAL Visual Object Classes (PASCAL VOC) and Microsoft
Common Objects in Context (MS COCO) while significantly
improving the detection accuracy compared to previous YOLO
versions.

In this paper, efficient workflow for estimating the solar PV
potential at the city scale is proposed. A deep learning-based target
detection method is used to identify existing urban noise barrier
sites from massive numbers of street-view images. Then, planned
sites for the urban noise barriers are identified based on urban
planning policies; these serve as supplemental sites where PV noise
barriers could be installed. Finally, the solar PV potential of the city
is estimated based on both the existing and planned urban noise
barrier sites.

3. Methodology

3.1. Research framework

In this study, a computational framework is developed for
estimating the solar PV potential of urban noise barriers with a
focus on suitable site selection for PVNB installations. The inte-
gration of PV systemswith the existing noise barrier is an attractive
solution for new PVNB installations. Besides, the sites planned for
the construction of noise barriers are also suitable for installing
PVNB systems.

The research process for assessing the power generation of solar
PV on urban noise barriers in Nanjing (Fig. 1) involves the following
three steps:

The first step is to detect existing noise barrier sites in Nanjing
automatically. This objective is implemented based on the Nanjing
road network data obtained from OpenStreetMap. The sampling
points for collecting the street-view image are generated along
with the OSM road network at 20-m intervals. YOLO v3 is applied as
the object detector to identify the street-view images containing
noise barriers from the massive street-view image dataset. The
locations of the identified street-view images are map-matched to
the corresponding road edge to determine the sites of existing
183
noise barriers.
The second step to automatically identify planned sites for noise

barriers in Nanjing based on urban policy. According to the speci-
fications for noise barrier placement, road network data, and the
vector boundaries of buildings in Nanjing from the Mapbox
(https://www.mapbox.com/), we obtained the planned sites for
noise barriers in Nanjing through buffer analysis.

The third step is to estimate the solar PV potential of both the
existing and planned urban noise barriers in Nanjing. Based on the
site identified in the previous steps, the existing and planned solar
PV potential of noise barriers in Nanjing was calculated using a
numerical model combined solar radiation data and the pre-
determined noise barrier parameters.

3.2. Experimental data acquisition

The experimental area of this study was obtained for Nanjing,
Jiangsu Province, China (Fig. 2). The road network in the study area
was obtained from OpenStreetMap using the following HTTP
request (https://www.openstreetmap.org/#map¼4/36.96/104.17)
performed by Python scripts. The road network includes road
attribute information. The roads in this road network have five
types: motorways, trunk roads, primary roads, secondary roads,
and tertiary roads. Because noise barriers are installed only at the
road edges of motorways (Fig. 2c yellow), and trunk roads (Fig. 2c
orange), primary roads, secondary roads, and tertiary roads were
not included in this study. The building outline data were supplied
by Mapbox (https://www.mapbox.com/), a website that provides
precise location data and can create customized, personalized
maps. The building outline vector data for the study area were also
obtained through Python scripts (Fig. 2c brown and black). The data
include building locations, heights, and other attributes.

Based on the vector data for the motorway and trunk roads in
Nanjing, sampled at 20 m intervals, 130,799 total sampling points
were extracted. Street-view images were obtained using a Python
script constituting an HTTP URL request form that conformed with
the Baidu Street View API for accessing the panoramic static image
service. The static street-view images can be retrieved by defining
URL parameters such as the image size, horizontal range, latitude,
longitude, and horizontal viewing angle. Specifically, we set the size
of the street-view image to 500 � 400 pixels and set the horizontal
range to 90�. Using these values, four images are sufficient to show
a panorama of the surrounding environment. In addition, the Baidu
Map API uses azimuth an angle to the true north), but most street
layouts have a particular perspective to true north. Because noise
barriers are mostly distributed on both sides of the roads, setting
the horizontal viewing angle to match the road’s forward direction
would be helpful in detecting any surrounding noise barriers.
Therefore, we further calculated the three main attributes needed
to sample specific points: longitude, latitude, and road direction.
Using these data, we obtained a set of street-view images corre-
sponding to each sampling point, as shown in Fig. 3. The street-
view images at clockwise 90� and 270� viewing angles to the
road direction were selected to ensure that the noise barrier posi-
tions were consistent with the corresponding sampling point.
Meanwhile, because most of Nanjing’s motorway and trunk roads
are two-way roads, to avoid repeated detections, we considered
only street-view images with a 90� viewing angle to the road di-
rection (the right side of the current lane) in the experiment.

3.3. Detecting noise barriers from street-view images automatically
using deep learning

In this step, the YOLO v3 object detector, which is based on deep
learning algorithms, is used to identify the sites of existing noise

https://www.mapbox.com/
https://www.openstreetmap.org/#map=4/36.96/104.17
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Fig. 1. Research flow chart.
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barriers automatically. The street-view images containing noise
barriers can be identified from the massive available dataset of
street-view images using a YOLO v3 model trained on our custom
dataset. The sites of existing noise barriers can then be determined
based on the locations where the street-view images containing
noise barriers were captured.

YOLO v3 is the third version of this object detection algorithm
series. Compared with the previous versions, the accuracy of YOLO
v3 is significantly improved, especially for small targets [45]. To
train a YOLO v3 model that can be used for noise barrier detection,
we labelled noise barriers in street-view images in the experi-
mental area. Model training is based on the training data set
composed of street-view images with the noise barriers marked.
Finally, a weight file is generated containing noise barrier feature
information. This weight file can be used to identify images con-
taining noise barriers from among all the street-view images. The
working principle of this approach is shown in Fig. 4. The input
street-view images were first divided into several grids of uniform
size. Each grid was used to predict the targets within it. Then, for
each grid, several prediction boxes were proposed that may contain
noise barriers along with their corresponding confidence levels.
The basis for determining whether there is a noise barrier in the
street-view image is whether the confidence score of the prediction
frame exceeds a certain threshold. In this study, this threshold was
set to 0.5 based on experience gained from similar studies [46]. This
threshold has a good effect for detecting noise barriers in street-
view images. Finally, the sampling points with noise barriers
were mapped to the corresponding roads and serialized to com-
plete the automatic detection of the existing noise barriers in the
study area.
3.4. Identify the planned sites of the noise barrier

The solar PV potential of the planned noise barriers are simu-
lated with regard to the installation of PVNB systems on planned
184
noise barrier sites. In this section, planned noise barrier sites are
identified based on the urban provisions for noise barrier installa-
tion and urban environmental noise standards [47,48]. According to
the urban policy, noise barriers should be planned for installation
when a road passes within a 35-m radius of buildings. As shown in
Fig. 5, a point (Point A) is set at the edge of the building. Then, a
vertical line is drawn to the road closest to the building; the vertical
line crosses the road at Point B. A noise barrier site should be
planned when the distance (L) between Point A and Point B is less
than 35 m.

After identifying the planned sites for noise barriers based on
the buffer analysis, the identification results are further processed
by removing sites where noise barriers already exist from the re-
sults. The overall framework and working process are shown in
Fig. 6.

ArcGIS was used first during the task of identifying planned
positions noise barrier sites to create a 35-m buffer zone around the
buildings in the study area (the yellow area in Fig. 5). The next step
was to find the overlaps between the 35-m building buffer and the
road network to find roads where noise barriers need to be
established (the orange area in Fig. 5). Finally, the identification
results were post-processed to identify errors and modify and
optimize discontinuous results in the initial results. Finally, posi-
tions with existing noise barriers acquired in 3.2 were removed.
The final outcome of the planned site identification for noise bar-
riers is exemplified by the white dotted line in Fig. 5.
3.5. Estimation of solar PV potential based on the identified PVNB
system sites

The solar PV potential based on the identified site for the PVNB
system were estimated using a computational solar radiation
model. Different types of noise barriers have different structures. In
this study, to simplify the estimation process, only the factors that
have a large influence on solar radiation are considered: these



Fig. 2. Study area and experimental data. (a) and (b) show the location of the study area, (c) is the magnified area in the main urban area of Nanjing in (b) to give an illustration of
the experiment data.

Fig. 3. An illustration of the street-view imagery captured in four directions at two sample sites.
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include slope, orientation, area, and latitude. The estimation of
solar PV potential for the identified sites for the PVNB system is
based on the following assumptions. This study assumes that the
185
existing types of noise barriers in Nanjing are vertical and that all
the noise barriers are 3 m tall. Considering that reflections from PV
modules installed on the PVNB can cause driver distraction on



Fig. 4. Schematic diagram of the process of automatic detection of noise barriers based on street-view images.

Fig. 5. Schematic diagram of the planned sites of the noise barrier.

Fig. 6. Flowchart of the identification of t
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roadways, this study assumes that the PV modules to be installed
on the noise barrier are installed on the side of the barrier away
from the road surface. Based on this assumption, the inclination
angle parameter (90�) and height parameter (3 m) of the noise
barrier are determined. Then, the noise barrier orientation and
latitude information are obtained based on the results of the
automatic detection of both the existing and planned noise
barriers.

Several steps are involved in assessing the solar PV potential of a
location: First, geographical and meteorological data, such as
building outlines, LiDAR, aerial satellite imagery, radiometric data
from land or satellite sites, etc. is entered. Second, a radiationmodel
combined with GIS analysis is used to obtain a radiation estimate.
Third, interfaces by which users can query, operate, and evaluate
the solar radiation potential at different levels are developed [49].
Many models have been developed to estimate solar radiation;
these vary in complexitydfrom simple empirical formulas based
on ordinary weather or climate data to complex solar radiation
transfer models [50]. Angstrom-Prescott formula describes the ra-
tio of total atmospheric transmittance to hours of sunshine and the
he planned sites of the noise barrier.



Fig. 8. Schematic diagram of the locative relationship between incident sunlight and a
noise barrier, where b is the slope angle of the noise barrier, g is the azimuth angle of
the noise barrier, f is the azimuth angle of the sun, qZ is the zenith angle of the sun,
and h is the altitude angle of the sun.

Fig. 9. Schematic diagram of the solar radiation received by a noise barrier. I1 denotes
direct radiation, and I2 denotes diffuse radiation.
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total outside sunshine hours as a linear relationship [51]. The
HardgreaveseSamani model has beenwidely applied in calculating
the total atmospheric transmittance with daily temperature
changes [52]. For real terrain at large spatial and time scales, solar
radiation estimation can be performed only through numerical
models that simulate the physical environment. Different software
tools consider various influencing factors and apply different
technical methods. For example, ArcGIS Solar Analyst considers
factors such as location, altitude, direction, and atmospheric
transport [28], while the r.sun model uses data such as terrain,
latitude, turbidity, radiation, and precise sky index to estimate the
amount of radiation on a horizontal or inclined surface [53].

For this study, based on the known surface-level radiation data,
a horizontal and inclined plane solar radiation conversion model
was used to estimate whether solar radiation available at a noise
barrier in the study area was sufficient.

The calculation process of solar PV potential for the noise bar-
riers is shown in Fig. 7. Based on the clear sky surface radiation data
from CAMS (http://www.soda-pro.com/web-services/radiation/
cams-radiation-service), the pre-processing extracts Global Hori-
zontal Irradiation (GHI), Beam Horizontal Irradiation (BHI), and
Diffuse Horizontal Irradiation (DHI) components to generate radi-
ation data that can be used for the estimation. For the pre-
determined research period, the solar position information was
calculated and updated at 15-min intervals. Then, the data were
entered into the solar radiation estimationmodel to obtain the total
amount of solar radiation received in a single interval. Finally, after
calculating the solar PV potential for the entire study period, the
results were accumulated to obtain the total solar PV potential of
the noise barriers. The locative relationship between incident
sunlight and a noise barrier is illustrated in Fig. 8.

The solar radiation reaching an inclined ground surface consists
of two parts: direct beam radiation and diffuse radiation, as shown
in Fig. 9. The reflected radiation is not considered in this study
because it constitutes only a small proportion of the total radiation.
Equation (1) is applied to calculate the global radiation [54]:

GIbg ¼ DBIbg þ DIbg (1)

where b is the slope angle of the noise barrier, g is the azimuth
angle of the noise barrier, GIbg is the global radiation, DBIbg is the
direct beam radiation, and DIbg is the diffuse radiation, as intro-
duced in Section 3.5.

Equation (2) is applied to calculate DBIbgin Equation (1) [55]:
Fig. 7. Flowchart of the estimation of solar PV potential for the noise barriers.

187

http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service


T. Zhong, K. Zhang, M. Chen et al. Renewable Energy 168 (2021) 181e194
DBIbg ¼BHI� Rb (2)

where BHI is the beam radiation on the horizontal surface and Rb is
the beam radiation conversion factor, that is, the ratio of the beam
radiation on an inclined surface to that on a horizontal surface of
the solar panel.

Rb ¼maxf½cos b� sin hþ sin b� cos h� cosðf�gÞ� = cos qz;0g
(3)

where bis the slope angle of the noise barrier, h is the altitude angle
of the sun, f is the azimuth of the sun, g is the azimuth angle of the
noise barrier, andqZ is the solar zenith angle (qZ ¼ 90� � h).

DIbg cannot be obtained directly; instead, it needs to be calcu-
lated based on the horizontal diffuse radiation, as follows [56]:

DIbg¼DHI�
n
ð1�KbÞ�ð1þcosbÞ

.
2�

h
1þf�sin3

�b
2

�
þKb�Rb

io

(4)

where Kb and f are the anisotropy indexes of the diffuse radiation
and DHI is the diffuse radiation on a horizontal surface.

The calculation formulas are as follows:

Kb ¼min
�ðGHI � DHIÞ

I0
;1

�
(5)

f ¼ðDNI=GHIÞ0:5 (6)

where GHI is the global radiation on the horizontal surface, DNI is
the direct normal radiation, and I0 is the extraterrestrial irradiance
in an horizontal surface.

The radiation data obtained in this research are for clear sky
conditions; consequently, the effect of cloud cover on solar radia-
tion under real weather conditions still needs to be considered. This
study refers to the relevant model proposed by Huang to calculate
the monthly average atmospheric transmittance and diffuse ratio
using cloud cover data [57]. Meteorological data for sunny and
cloudy days in the study area were obtained from World Weather
Online (https://www.worldweatheronline.com/). Then, the total
solar radiation received by the noise barrier under actual weather
conditions was calculated.

Mtrans ¼0:7� Pclear þ 0:3� Pcloudy (7)

Mdif ¼0:2� Pclear þ 0:7� Pcloudy (8)

where Mtrans is the monthly average atmospheric transmittance,
Mdif is a monthly average diffuse ratio, Pclear is the percentage of
clear days in each month, and Pcloudy is the percentage of monthly
cloudy weather.

Therefore, the total solar radiation received by the noise barrier

under actual weather conditions is GIbg
i:

GIbg
i¼

X12
m¼1

�Xn2

d¼1

�X20
h¼5

DBIbg
�
�Mtrans

�
þ
X12
m¼1

�Xn2

d¼1

�X20
h¼5

DBIbg
�
�Mdif

�

(9)

where GIbg
iis i-th noise barrier received total solar radiation in a

year, and i is the i-th noise barriers (i ¼ 1, 2, 3 …, n1),m represents
month (m ¼ 1, 2, 3…,12), Here, d is d-th day of the month, n2 is the
actual number of days in each month, h is the time in a 24-h system
(h ¼ 5, 6, 7 …, 20).
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The following formula is applied to estimate the total solar ra-
diation potential (TSR) of all the noise barriers in Nanjing for each
full year:

TSR¼
Xn1

i¼1

�
Si �GIbg

i
�

(10)

where Si is the area of the i-th noise barrier, i is the number of noise
barriers (i ¼ 1, 2, 3 …, n1), where n1 is the total number of noise
barriers, and TSR is the total solar PV potential of the PVNB system
for one year (MWh).

3.6. Estimation of solar PV power generation based on the identified
PVNB system sites

The estimation of solar PV potential is crucial for accurate
measurement of the installed capacity of the PVNB system. To
harvest the largest amount of the electricity of the PVBN system,
the rated power of the installed solar panel is selected according to
themaximum solar radiation power of the noise barrier in this area.
The noise barrier in the area with the largest annual solar radiation
reception is used to calculate themaximum solar radiation received
by the noise barrier in this area per unit area and unit time. In this
study, the specifications of the installed solar panels were deter-
mined to have a dimension of 1 m � 1 m with a rated power of
200 W. The total power generation of the PVNB system in Nanjing
can be calculated using Equation (11) [58]:

EP ¼ PAZ � H � K (11)

where EP is the power generation of solar PV electricity (kWh), PAZ
is the installed capacity of the solar PV system (kW), H is the
average peak sunlight hours of the solar PV system (h), K is the
overall performance coefficient of the solar PV systemwith general
value of 0.8 [59].

The average peak sunlight hours can be calculated by Equation
(12) [58].

H¼ TSR
S� Es

(12)

where TSR is the total solar radiation potential of all the noise
barriers, and S is the area of solar panels laid on the noise barriers,
Es is the standard test condition of photovoltaics (¼ 1000 W/m2).

The installed capacity of the solar PV system is calculated with
the rated power P of a single solar panel and the number N of solar
panels of the solar PV system using Equation (13) [60]:

PAZ ¼ P � N (13)

where P is the rated power of one single solar panel, and N is the
number of solar panels.

4. Experimental results

This study adopted Nanjing as a study area to verify the auto-
matic method for detecting noise barriers and identifying the po-
tential radiation. The overall assessment of the noise barriers’ solar
PV potential was implemented to construct an economic evaluation
of the utility of noise barriers to investigate their potential for
application.

4.1. Solar PV potential of existing noise barriers

Based on the methodology of automatic detection of noise

https://www.worldweatheronline.com/
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barriers described in Section 3.2, a total of 72,399 street-view im-
ages of the road networks (motorway and trunk roads) in Nanjing
were obtained. Based on the previous sampling results of noise
barriers, 1289 street-view images containing noise barriers and 100
street-view images containing tunnels were selected from the
current sampling points of noise barriers in Nanjing through visual
inspection. The noise barriers and the inner walls of the tunnels
were labelled separately because, during a preliminary test, street-
view images with tunnels and some other areas were easily
mistaken as noise barriers. Therefore, the street-view images with
the tunnels treated as a separate detection target. The street-view
image samples with labelled noise barriers and tunnels were
input into the YOLO v3 model for training. After obtaining the
weight file, all the street-view images were input into themodel for
detection, finally achieving the automatic detection of noise bar-
riers in Nanjing. The output street-view images of the model were
divided into three categories: 2250 street-view images contained
noise barriers, 1812 contained tunnels, and 68,337 contained no
noise barriers and tunnels.

The accuracy indicators were used to evaluate the recognition
accuracy of the model. From the complete set of 72,339 street-view
images of the automatic noise barrier detection model, 20% (14,481
images) were selected from each of the three types of output
datasets and used to test model accuracy. Among the 450 street-
view images contained noise barriers, there are 316 images
detected correctly and 134 images detected incorrectly. Among the
363 street-view images with tunnels, 362 images are detected
correctly, and 1 image is detected incorrectly. Among the 13,668
street-view images that contain neither the noise barrier nor the
tunnel, 13,256 images are detected correctly, and 412 images are
detected incorrectly. For the total 14,481 sampling images, there
are 13,934 images detected correctly and 547 images are detected
incorrectly. Therefore, the accuracy of the automatic noise barrier
detection model in our case study is 96.22%.

The coordinates of the street-view images that were finally
detected as containing noise barriers were mapped to the road
layer and serialized processing. In this study, we determine the
distribution of existing noise barriers according to the identifica-
tion results based on the street-view images. Street-view images
were obtained at sample points of 20 m intervals. The road section
will be determined to have noise barrier installed if two continuous
street-view images are both identified to have contained noise
barriers. The spatial distribution of the existing noise barriers in
Nanjing was obtained, as shown in Fig. 10:

As Fig. 10 shows, the existing noise barriers in Nanjing appear
mainly in scattered areas with dense buildings around the trunk
roads near the centre of the city, such as areas A and B in Fig. 10.
These areas are relatively close to trunk roads, and residents will be
significantly affected by road noise pollution. It is necessary to
establish noise barriers in these areas to reduce traffic noise to
ensure a better living environment. Another feature is that the
noise barrier fragments distributed on both sides of truck routes are
more critical. At present, there are few noise barriers on both sides
of any motorway in Nanjing, except for those distributed in small
concentrated areas, for example, the C area. Themotorway network
in Nanjing is mainly distributed around the peripheral areas of the
city. The traffic noise from these motorways does not seriously
affect urban residents because of the long distances between the
motorways and the nearest residential areas; therefore, noise bar-
riers are less common on highways. However, due to the relatively
dense distribution of buildings on both sides of the Nanjing
motorway, the total length of the noise barriers distributed along
both sides of the motorway in this area is longer.

The urban building surface model was constructed in ArcGIS
based on the height attributes of the building vector data. Then, the
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ArcGIS Mountain Shadow Tool was used to calculate the shadows
caused by urban buildings. The shadow layer was overlaid with the
noise barrier location layer to determine the effect of urban
building shadows on the estimation of the solar PV potential on the
noise barriers. This analysis found that the noise barriers in Nanjing
are not covered by shadows from the surrounding buildings.

Based on the statistics of the extent of existing noise barriers
alongmotorway and trunk roads in Nanjing, the total mileage of the
existing noise barriers in Nanjing is 23,767 m. Among these, the
extents of the noise barriers on motorway and trunk roads are
14,558 m and 9209 m, respectively.

Using the solar radiation data and themethod for estimating the
solar radiation potential of inclined surfaces described in Section
3.5, the PV potential of existing noise barriers in Nanjing was
estimated. According to the acquired GHI and DNI data of Nanjing
with a 15-min update rate in 2019 as introduced in Section 3.5, we
calculated the annual solar radiation received by each existing
noise barrier during this time period. Then the solar PV potential of
the existing noise barriers of Nanjing in 2019 was derived by
summing the cumulative power generation for all of 2019. The
visualized results are shown in Fig. 11:

As Fig. 11 shows, the areas with large noise barrier solar PV
potential are largely consistent with the concentrated distribution
area of noise barriers from Fig. 10. However, the solar PV potential
of the noise barriers in areas A and C is significantly higher than
that in area B. This is because the distribution of noise barriers in
areas A and C has strong continuity; moreover, the areawhere solar
PV modules can be installed is relatively larger. Although area B is
where the distribution of noise barriers is concentrated, noise
barriers are not continuously distributed. Therefore, the solar PV
potential of noise barriers in area B is lower than that in areas A and
C. According to Fig. 10, the existing noise barriers in Nanjing are
mainly distributed on the trunk roads in the city, and there are few
distributed on both sides of the motorway. However, Fig. 11 shows
that the solar PV potential of the existing noise barriers on the
motorway in Nanjing is concentrated in some areas. The results
indicated that the annual PV potential on the existing site of the
noise barrier of motorway and trunk roads in Nanjing are
18,015 MW h and 11,122 MW h, respectively.

4.2. Solar PV potential of planned noise barrier

Fig. 12 shows the spatial distribution of noise barriers in Nanjing
based on policy simulation is emphatically correlated with the
distribution of urban buildings. Almost all the sections of buildings
surrounding both sides of the trunk roads were identified as loca-
tions where noise barriers should be built, such as areas A and B in
Fig. 12. According to the specifications for noise barriers installa-
tion, it is necessary to establish noise barriers within a certain range
of different building categories in urban areas, such as residential
areas, hospitals, and commercial areas. The purpose is to improve
the quality of the acoustic environment and ensure appropriate
volume levels for residential living, study, and work areas. The
trunk roads in the city are generally close to this area; consequently,
many areas exist where noise barriers need to be installed. Unlike
the trunk roads in the city, there are fewer areas where noise bar-
riers need to be installed on the Nanjing motorway. Except for the
relatively concentrated distribution in area C, other areas have
sparser distributions. Through the statistics on the noise barrier
mileage based on policy simulation in Nanjing, we found that the
total extent of planned noise barriers in Nanjing is 95,390 m.
Among these, noise barrier extents of motorways and trunk roads
are 12,925 m and 82,465 m, respectively.

The process of solar PV potential assessment based on policy
simulationwas performed consistently with the process of solar PV



Fig. 10. The automatic detection result of existing noise barriers in Nanjing. (a) An overview of the spatial distribution of existing noise barriers in Nanjing with dash line box
marked the part of the magnified area; (b) The magnified area in the main urban area of Nanjing; (c) The partial detail display of the marked three areas in Fig. 10 (b).

Fig. 11. Spatial distribution of solar PV potential of the existing noise barriers in Nanjing. (a) An overview of the solar PV potential of the existing noise barriers in Nanjing with dash
line box marked the part of the magnified area; (b) The magnified area in the main urban area of Nanjing; (c) The partial detail display of the marked three areas in Fig. 11 (b).

T. Zhong, K. Zhang, M. Chen et al. Renewable Energy 168 (2021) 181e194

190



Fig. 12. Spatial distribution of planned noise barriers in Nanjing. (a) An overview of the spatial distribution of planned noise barriers with dash line box marked the part of the
magnified area; (b) The magnified area in the main urban area of Nanjing; (c) The partial detail display of the marked three areas in Fig. 12 (b).
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potential assessment for the existing noise barriers in Nanjing. The
solar radiation received by each noise barrier during the study
period was calculated according to the acquired GHI and DNI data
of Nanjing City updated every 15 min in 2019, as introduced in
Section 3.5. Then the solar PV potential of the planned noise barrier
in Nanjing in 2019 was calculated by summing the cumulative ra-
diation for the entire year. The calculation results are visualized in
Fig. 13:

Fig. 13 shows that the area with the highest solar PV potential is
consistent with the concentrated distribution area of noise barriers
in Fig. 12. In particular, noise barriers along Nanjing’s trunk roads
have substantial solar PV potential, especially in areas A and B. In
addition, the noise barriers are widely distributed on both sides of
the trunk roads in other areas. The distribution of solar PV potential
based on policy simulation along the Nanjing motorway is also
relatively extensive. In addition to the relatively concentrated de-
livery in the C area, other areas possess specific distributions. Ac-
cording to the solar PV potential statistics, the annual solar PV
potentials of noise barriers based on planned sites along Nanjing’s
motorway and trunk roads are 15,241 MW h and 97,811 MW h,
respectively.
4.3. Temporal analysis of solar PV potential

This study also performed a time series analysis of the solar PV
potential for all the solar barriers in both the existing and planned
locations. The total solar PV potential the existing and planned
noise barriers in Nanjing during different periods of each month of
the year was estimated, and the results are shown in Table 1. Spe-
cifically, according to the seasonal characteristics of the hourly solar
PV potential of each noise barrier, we divided the hourly solar PV
potential curve into different colours bymonth as follows: (i) spring
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(green): March, April, and May; (ii) summer (red): June, July, and
August; (iii) autumn (orange): September, October, and November;
(iv) winter (blue): December, January, and February.

Fig. 14 illustrates the overall solar PV potential of the all noise
barrier of Nanjing changes at different times in one day. The solar
PV potential peaked at 11 a.m., and 3 p.m. as the noise barriers are
placed vertically on both sides of the road. This condition differs
from the characteristics of solar radiation received on a horizontal
plane. When the receiving surface of the solar panel is horizontal,
the acceptable direct radiation intensity is highest when the solar
elevation angle reaches its maximum value at noon. On the con-
trary, when the receiving surface of the solar panel is vertical with a
fixed orientation, the optimal light incidence angle will not occur at
noon. For example, in winter at 7e8 am o’clock, the solar radiation
received by PVNB are higher than other time in the noon as the
solar radiation just hits the PVNB vertically.

Because of the different sunrise and sunset times on each day of
the year, the received radiation in certainmonths is zero from 5 to 7
am, and from 5 to 8 pm. By comparing the sum calculated for each
month, it can be seen that the solar PV potential of the noise barrier
reaches a maximum of 13,562 MW h in July and a minimum of
9617 MW h in January. Generally, the PV potential is substantial
between April and September but weak in winter (i.e., November
December, January, and February).
4.4. Solar PV power generation of existing and planned PVNB

The potential installed capacity of the PVNB system and the
average peak sunlight hours in Nanjing can be calculated according
to the solar power generation estimation method described in
Section 3.6. The measured potential installed capacity and average
peak sunlight hours can further be used to estimate the power



Fig. 13. Spatial distribution of the solar PV potential of planned noise barriers in Nanjing. (a) An overview of the solar PV potential of planned noise barriers in Nanjing with dash
line box marked the part of the magnified area; (b) The magnified area in the main urban area of Nanjing; (c) The partial detail display of the marked three areas in Fig. 13 (b).

Table 1
Solar PV potential of existing and planned PVNB system in Nanjing during different periods of each month in 2019 (MWh).

Month 5~6am 6~7am 7~8am 8~9am 9e10am 10e11am 11ame12pm 12~1pm 1~2pm 2~3pm 3~4pm 4~5pm 5~6pm 6~7pm 7e8pm Total

January 0 0 393 674 967 1107 1149 1167 1184 1140 957 824 54 0 0 9617
February 0 8 287 712 972 1081 1112 1161 1248 1295 1220 1019 256 0 0 10,371
March 0 308 638 969 1123 1139 1080 1060 1167 1272 1239 978 571 8 0 11,553
April 41 352 758 993 1071 1042 966 1024 1215 1383 1443 1305 998 166 0 12,756
May 502 728 1015 1110 1080 959 790 732 981 1225 1355 1271 879 270 0 12,895
June 618 738 994 1075 1034 912 742 617 852 1104 1245 1188 858 302 1 12,279
July 301 655 976 1115 1143 1100 1006 948 1127 1300 1373 1270 913 336 0 13,562
August 71 480 888 1077 1121 1079 997 1027 1208 1363 1424 1311 930 392 0 13,367
September 3 894 937 1121 1156 1098 1008 1019 1161 1288 1285 1057 694 0 0 12,721
October 0 449 739 1076 1183 1156 1080 1078 1165 1190 1018 568 333 0 0 11,035
November 0 43 1261 1091 1194 1182 1131 1124 1153 1108 870 492 0 0 0 10,649
December 0 0 1016 956 1152 1195 1159 1115 1092 997 711 226 0 0 0 9618
Total 1535 4655 9902 11,970 13,196 13,048 12,221 12,070 13,553 14,664 14,140 11,508 6487 1473 1 140,423
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generation of both the existing and planned urban noise barriers in
Nanjing.

The total available area on the existing noise barriers for
installing the solar panel is 71,303 m2, while the total available
area on the planned noise barriers for installing the solar panel is
286,175 m2. In this study, the installed solar panels are in a
dimension of 1 m � 1 m with a rated power of 200 W. For the
existing urban noise barriers, the potential installed capacity of
the PVBN system in year 2019 is 14.26 MW, and the average peak
sunlight hours is 408.65 h. Therefore, the potential total power
generation of the PVBN system based on the existing urban noise
barriers is 4662 MW h in 2019. For the planned urban noise bar-
riers, the potential installed capacity of the PVBN system in year
2019 is 57.24MW, and the average peak sunlight hours is 395.05 h.
Therefore, the potential total power generation of the PVBN
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system based on the planned urban noise barriers is 18,088 MW h
in 2019.

5. Conclusion and future studies

This study provided a computational method for estimating
solar PV potential based on noise barriers. Nanjing was used as a
case study to demonstrate the efficiency of the estimation process.
Using a deep learning-based target detection method, we first
identified sites with existing urban noise barriers from massive
numbers of street-view images. The accuracy of noise barrier
detection by this system reached 96.22%. Both the existing and
planned sites of the urban noise barrier are selected as potential
sites for installing the PVNB system. Based on the existing and
planned locations of noise barriers in Nanjing, the annual solar PV



Fig. 14. Solar PV potential of existing and planned PVNB systems in Nanjing during each month in 2019.
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potentials in year 2019 are 29,137MWh and 113,052MWh, and the
potential solar PV power generations in 2019 are 4662 MW h and
18,088 MW h, respectively. The estimation results of solar PV po-
tential of PVNB systems are calculated based on the automatic noise
barrier detection model in Nanjing and the solar radiation data of
Nanjing in 2019 provided by Copernicus Atmosphere Monitoring
Service (CAMS), which can be further improved withmore accurate
noise barrier detection model and meteorological data.

The method developed in this study is highly flexible and can be
applied to other regions of the world. To simplify the estimations,
this study assumed that PVNB has only one size. The cost involved
in manufacturing the PV modules has declined rapidly in recent
years, which enables PVNBs to be manufactured with various sizes
to meet various local requirements. Future studies could further
explore the solar PV potential of noise barriers while considering
different sizes and designs. In addition, this study did not consider
the economic costs involved in the deployment of PVNB systems.
Future work needs to assess the economic feasibility by comparing
the cost required to deploy PVNB systems with the potential eco-
nomic benefits solar PV.
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